Login

Forgot your password?
New User?
Remember me
banner banner

You are here:Home » Antibodies » Abs to Infectious Disease Rabies » Anti -Rabies

Anti -Rabies

Pricing

  For pricing information, USA customers sign in.
  Outside USA? Please contact your distributor for pricing.

Specifications

Clone Host Grade Applications
Monoclonal Mouse IC
The rabies virus is the type species of the Lyssavirus genus, in the family Rhabdoviridae, order Mononegavirales. Lyssaviruses have helical symmetry, with a length of about 180 nm and a cross-section of about 75nm. These viruses are enveloped and have a single-stranded RNA genome with negative sense. The genetic information is packed as a ribonucleoprotein complex in which RNA is tightly bound by the viral nucleoprotein. The RNA genome of the virus encodes five genes whose order is highly conserved: nucleoprotein (N), phosphoprotein (P), matrix protein (M), glycoprotein (G), and the viral RNA polymerase (L).
Catalog #R0012-01B
Once within a muscle or nerve cell, the virus undergoes replication. The trimeric spikes on the exterior of the membrane of the virus interact with a specific cell receptor, the most likely one being the acetylcholine receptor. The cellular membrane pinches in a procession known as pinocytosis and allows entry of the virus into the cell by way of an endosome. The virus then uses the acidic environment of that endosome and binds to its membrane simultaneously, releasing its five proteins and single strand RNA into the cytoplasm.
The L protein then transcribes five mRNA strands and a positive strand of RNA all from the original negative strand RNA using free nucleotides in the cytoplasm. These five mRNA strands are then translated into their corresponding proteins (P, L, N, G and M proteins) at free ribosomes in the cytoplasm. Some proteins require post-translative modifications. For example, the G protein travels through the rough endoplasmic reticulum, where it undergoes further folding, and is then transported to the Golgi apparatus, where a sugar group is added to it (glycosylation).
Where there are enough proteins, the viral polymerase will begin to synthesize new negative strands of RNA from the template of the positive strand RNA. These negative strands will then form complexes with the N, P, L and M proteins and then travel to the inner membrane of the cell, where a G protein has embedded itself in the membrane. The G protein then coils around the N-P-L-M complex of proteins taking some of the host cell membrane with it, which will form the new outer envelope of the virus particle. The virus then buds from the cell. From the point of entry, the virus is neurotropic, traveling quickly along the neural pathways into the central nervous system, and then to other organs. The salivary glands receive high concentrations of the virus, thus allowing further transmission.
ApplicationsSuitable for use in Immunocytochemistry. Other applications not tested.
Recommended DilutionOptimal dilutions to be determined by the researcher.
Storage and StabilityMay be stored at 4°C for short-term only. For long-term storage and to avoid repeated freezing and thawing, add sterile glycerol (40-50%), aliquot and store at -20°C. Aliquots are stable for at least 3 months at -20°C. For maximum recovery of product, centrifuge the original vial after thawing and prior to removing the cap. Further dilutions can be made in assay buffer.
Clone TypeMonoclonal
IsotypeIgG2a
Clone No9C13
HostMouse
ConcentrationAs reported
FormPBS with , pH 7.4
PurityAs reported
ImmunogenPurified rabies virus.
SpecificityReacts with a glycoprotein of rabies virus. More than 20 different strains from 4 serogroups, including CVS, Lagosbat, Mokola, Duwenhage were positive in neutralization reaction with this antibody.
Important NoteThis product as supplied is intended for research use only, not for use in human, therapeutic or diagnostic applications without the expressed written authorization of United States Biological.
Alternate namesRabies Virus


External Links