Login

Forgot your password?
New User?
Remember me
banner banner
 

High purity products at competitive prices.

Nourseothricin

A group of antibiotic substances produced by Streptomyces variants. They are composed of an aminosugar and different polypeptide chains and may have broad spectrum antimicrobial and some antiviral properties. Streptothricin antibiotic Nourseothricin (NTC) is used for a broad spectrum of viruses, bacteria and other unicellular or complex organisms. Preferred selection antibiotic for genetically modified Gram-positive and Gram-negative bacteria, yeast, filamentous fungi, protozoa, plants and many more. Selection of recombinant strains is based on inactivation of NTC by monoacetylation of ß-amino group of the ß-lysine by Nouresothricin N-acetyltransferase the product of the sat1 gene.

Chemical structure for Nourseothricin, (5ξ)-4-O-Carbamoyl-2-deoxy-2-{[(3S)-3,6-diaminohexanoyl]amino}-N-[(3aS,7R,7aS)-7-hydroxy-4-oxooctahydro-2H-imidazo[4,5-c]pyridin-2-ylidene]-α-L-lyxo-hexopyranosylamine
Figure 1. Chemical structure for Nourseothricin.

 

Applications
Suitable for use in selection of recombinant Leishmania strains. Other applications not tested.

 

Recommended Dilutions
Added to growth medium to a final concentration of 100ug/ml. Optimal dilutions to be determined by the researcher.

 

Selection
For selection of recombinant Leishmania strains Nourseothricin NTC is added to the growth medium to a final concentration of 100ug/ml.

 

Reconstitution
Reconstitute with ddH2O to 100mg/ml, sterile filter and desiccant. Maximal solubility is 1g/ml.

 

Storage and Stability
Lyophilized powder may be stored at -20°C. Stable for 12 months after receipt at -20°C. Reconstitute with sterile ddH2O. Aliquot to avoid repeated freezing and thawing. Store at -20°C. For maximum recovery of product, centrifuge the original vial after thawing and prior to removing the cap. Further dilutions can be made in assay buffer.

 

Table 1
* MIC: Minimal inhibitory concentration
** IC50: Concentration inhibiting growth by 50%

 

Gram-negative bacteria

 

MIC* (ug/ml)

Selection conc. (ug/ml)

Escherichia coli 2-12 50
Francisella tularensis - 5
Pseudomonas aeruginosa 50 100

 

Echerichia Coli
Figure 2. Echerichia Coli.

 

Gram-positive Bacteria

 

MIC* (ug/ml)

Selection conc. (ug/ml)

Bacillus subtilis 5 10
Enterococcus faecium 8-256 500
Staphylococcus aureus -12 50

 

Streptomycetes

 

MIC* (ug/ml)

Selection conc. (ug/ml)

Streptomyces lividans 6 100

 

Yeast

 

MIC* (ug/ml)

Selection conc. (ug/ml)

Candida albicans 200 250-450
Cryptococcus neoformans - 100
Hansenula polymorpha - 100
Pichia pastoris - 100
Saccharomyces cerevisiae 25 100

 

Rice leaf portion not midrib cross section. Image enhanced.
Figure 3. Candida Albicans

 

Filamentous fungi

 

MIC* (ug/ml)

Selection conc. (ug/ml)

Acremonium chrysogenum - 25
Sordaria macrospora - 50
Ustilago maydis - 75
Protozoa Leishmania tarentolae - 100
Phytomonas serpens - 100
Plasmodium falciparum 75* -
Toxoplasma gondii - 500

 

Rice leaf portion not midrib cross section. Image enhanced.
Figure 4. Macro shot of fuzzy mold in agar.

 

Plants

 

MIC* (ug/ml)

Selection conc. (ug/ml)

Arabidopsis thaliana 20 200
Oryza sativa 20 200

 

Rice leaf portion not midrib cross section. Image enhanced.
Figure 5. Rice leaf portion not midrib cross section. Image enhanced.

 

 

References:

  1. Cox, et al., Infect. Immunity 71: 173 (2003).
  2. Gold, et al., Gene 142: 225 (1994).
  3. Goldstein, et al., Yeast 15: 1541 (1999).
  4. Hamano, et al., J. Biol. Chem. 281: 16,842 (2006).
  5. Hentges, et al., Yeast 22: 1013 (2005).
  6. Jacobs, et al., Nature Protocols 4: 58 (2009).
  7. Ji, et al., J. Antibiot. 60: 739 (2007).
  8. Joshi, et al., Gene 156: 145 (1995).
  9. Kloti, et al., Selectable marker in plants. United States Patent 6696621 (2004).
  10. Kojic, et al., Can. J. Microbiology 46: 333 (2000).
  11. Kück, et al., Fungal Genetics Newsletter 53: 9 (2006).
  12. Lukeš, et al., Mol. Biochem. Parasitol. 148: 125 (2006).
  13. Maier, et al., Appl. Environment. Microbiol. 72: 1878 (2006).
  14. McDade, et al., Med. Mycol. 39: 151 (2001).
  15. Mamoun, et al., PNAS 96: 8716 (1999).
  16. Mandal, et al., Ind. J. Exptl. Biol. 47: 475 (2009).
  17. Nagotu, et al., Traffic 9: 1471 (2008).
  18. Roemer, et al., Molec. Microbiol. 50: 167 (2003).
  19. Shen, et al., Infect. Immun. 73: 1239 (2005).
  20. Van, et al., J. Parasitol. 92: 668 (2006).
  21. Werner, et al., Antimicrob. Agents Chemother. 45: 3267 (2001).