Technical Data
Calnexin (CNX), an abundant ~90kD molecular chaperone, is a unglycosylated resident ER transmembrane protein. In mammalian cells, calnexin, together with calreticulin (CRT), plays a key role in glycoprotein folding and its control within the ER, by interacting with folding intermediates via their monoglucosylated glycans (4). Calnexin associates with newly synthesized monomeric glycoproteins and only recognizes glycoproteins when they are incompletely folded. Calnexin associates with numerous oligomeric protein complexes within the ER, including beta1 and alpha6 integrins (5), major histocompatibility class I (6, 7) and class II molecules (8), the antigen receptors expressed on T and B lymphocytes (7), human thyroperoxidase (hTPO) (9), and acetylcholine receptor (10). Recent data also suggest that calnexin might be responsible for the prolonged retention of pro-alpha6 integrin within ER compartment (11). Furthermore, calnexin has been demonstrated to function as a bonafide molecular chaperone capable of interacting with polypeptide segments of folding glycoproteins (12).

Western Blot (Colorimetric) (1): 1:2,000
Immunoprecipitation (1): 1:100
Immunocytochemistry (3): 1:200
Optimal dilutions to be determined by researcher.

Positive Controls:
Heat Shocked HeLa Cell Lysate

50ul-20CBlue IceCanineRabbit
A 19 residue synthetic peptide DTSAPTSPKVTYKAPVPSG based on the canine calnexin (residues 50-68) (2) and the peptide coupled to KLH.
Antibody is raised against a synthetic peptide from the amino terminus of canine calnexin and exhibits cross-reactivity with human, monkey, mouse, rat, rabbit, guinea pig, hamster, bovine, canine, sheep, chicken, porcine, chinook salmon and Xenopus.
Intended for research use only. Not for use in human, therapeutic, or diagnostic applications.
1. Anhquyen, L., Steiners, J.L., Ferrell, G.A., Shaker, J.C., and Sifers R.N. (1994) J. Biol.
Chem. 269: 7514-7519.
2. Wada, I., Rindress, D., Cameron, P.H., Ou, W.-J., Doherty-II., J.J., Louvard, D., Bell,
A.W., Dignard, D., Thomas, D.Y., and Bergeron, J.J.M. (1991) J. Biol. Chem. 266:
3. Skehel, P.A., Fabian-Fine, R., and Kandel, E.R. (2000) PNAS 97: 1101-1106.
4. Elagoz, A., Callejo, M., Armstrong, J., and Rokeach, L.A. (1999) J. Cell Sci. 112: 4449-
5. Bergeron, J. J., Brenner, M. B., Thomas, D. Y., and Willium, D.B. (1994) Trends.
Biochem. Sci. 19: 124-128.
6. Bossuyt, X. and Blanckaert, N. (1994) Biochem. J. 302: 261-269.
7. Brunke, M., Dierks, T., Schlotterhose, P., Escher, A., Schmidt, B., Szalay, A. A., Lechte,
M., Sandholzer, U., and Zimmermann, R. (1996) J. Biol. Chem. 271: 23487-23494.
8. Bu, G., and Rennke, S. (1996) J. Biol. Chem. 271: 22218-22224.
9. Fayadat, L., Siffroi-Fernandez, S., Lanet, J., and Franc, J. L. (2000) Endocrinology
141(3): 959-966.
10. Keller, S.H., Linstrom, J., and Taylor, P. (1996) J. Biol. Chem. 271: 22871-22877.
11. Rigot, V., Andre, F., Lechmann, M., Lissitzky, J. C., Marvaldi, J., and Luis, J. (1999)
Eur. J. Biochem. 261(3): 659-666.
12. Ihara, Y. Cohen-Dyle, M. F., Saito, Y., and Williams, D. B. ( 1999) Mol. Cel l 4(3): 331-