Technical Data

378041
Clone Type
Monoclonal
Host
Mouse
Isotype
IgG1,k
Clone Number
DC12.2.G10.A10.D5
Grade
Affinity Purified
Applications
E
Shipping Temp
Blue Ice
Storage Temp
-20°C
Notes
Preservative Free
Mouse Anti-Severe Fever with Thrombocytopenia Syndrome Virus Nucleoprotein (SFTSV)

Severe fever and thrombocytopenia syndrome virus (SFTSV) is a segmented, negative-strand RNA Phlebovirus belonging to the Bunyaviridae family. SFTSV is a tick-borne bunyavirus, which was first recognized in China in 2009 (Yu, XJ). Since 2009, reported cases of SFTSV infection have increased dramatically, occurring predominantly in China, South Korea and Japan, but also in the US and Mediterranean countries. Tick-borne phleboviruses (TBPVs) can classified into four distinct groups; Uukuniemi group, Bhanja group, Kaisodi group and SFTS/Heartland virus group (Matsuno et al., 2015)

The SFTSV genome contains tri-segmented negative-sense single-stranded RNAs (-ssRNAs), including large (L), medium (M), and small (S) segments (Yu et al., 2011). The L segment encodes the RNA-dependent RNA polymerase (RdRp), the M segment encodes a precursor of glycoproteins (Gn and Gc), and the S segment encodes both a nucleocapsid protein (NP) and a nonstructural protein (Jiao et al., 2011). The Gn and Gc glycoproteins form a heterodimer and shape the spikes on the surface of the virion, for receptor binding and virus entry. The C-type lectin, DC-SIGN, has been identified as one of the factors for SFTSV attachment and entry into cells (Hofmann et al., 2013). The nucleocapsid protein (NP) is essential for viral replication; it facilitates viral RNA encapsidation and is responsible for the formation of the ribonucleoprotein complex (Zhou et al., 2013). The N protein is highly immunogenic and conserved among all isolates in each of the phleboviruses. Therefore, N protein is often selected as a target of antigen and antibody detection (Fukuma et al., 2016).
Currently, there is no treatment for SFTSV infection and it is recognized by the World Health Organization as an emerging highly pathogenic virus, which presents a significant threat to human health (WHO). The viral RNA level in sera of patients with SFTS is strongly associated with clinical outcomes and diagnostic tools with high sensitivity and specificity are needed in disease endemic areas.
Applications
Suitable for use in ELISA. Other applications not tested.
Recommended Dilution
Optimal dilutions to be determined by the researcher.
Storage and Stability
May be stored at 4°C for short-term only. Aliquot to avoid repeated freezing and thawing. Store at -20°C. Aliquots are stable for 12 months after receipt. For maximum recovery of product, centrifuge the original vial after thawing and prior to removing the cap.
Immunogen
Recombinant protein corresponding to aa2-245 from Severe Fever with Thrombocytopenia Syndrome Virus (SFTSV) Nucleoprotein, fused to His-Tag at N-terminal, expressed in HEK293 cells.
Form
Supplied as a liquid in PBS, pH 7.4. No preservative added.
Purity
Purified by Protein G affinity chromatography from hybridoma culture supernatant.
Specificity
Recognizes Severe Fever with Thrombocytopenia Syndrome Virus (SFTSV) Nucleoprotein.

Intended for research use only. Not for use in human, therapeutic, or diagnostic applications.

References
1. Fukuma A, Fukushi S, Yoshikawa T, et al. (2016). Severe Fever with Thrombocytopenia Syndrome Virus Antigen Detection Using Monoclonal Antibodies to the Nucleocapsid Protein. PLoS Negl Trop Dis. 2016; 10(4):e0004595.|2. Hofmann H, Li X, Zhang X, et al. (2013). Severe fever with thrombocytopenia virus glycoproteins are targeted by neutralizing antibodies and can use DC-SIGN as a receptor for pH-dependent entry into human and animal cell lines. J Virol. 2013; 87(8):4384‐4394.|3. Jiao et al. (2011). Preparation and evaluation of recombinant severe fever with thrombocytopenia syndrome virus nucleocapsid protein for detection of total antibodies in human and animal sera by double-antigen sandwich enzyme-linked immunosorbent assay. J Clin Microbiol 50, 372–377.|4. Matsuno K, Weisend C, Kajihara M, et al. (2015). Comprehensive molecular detection of tick-borne phleboviruses leads to the retrospective identification of taxonomically unassigned bunyaviruses and the discovery of a novel member of the genus phlebovirus. J Virol. 2015; 89(1):594‐604.|5. Yu, XJ et al. (2011). Fever with thrombocytopenia associated with a novel bunyavirus in China. N Engl J Med. Apr 21; 364(16):1523-32|6. World Health Organization: Risk assessment of human infection with a novel bunyavirus in China.|7. Zhou H, Sun Y, Wang Y, et al. (2013). The nucleoprotein of severe fever with thrombocytopenia syndrome virus processes a stable hexameric ring to facilitate RNA encapsidation. Protein Cell. 2013; 4(6):445‐455.
USBio References
No references available
United States Biological | 4 Technology Way | Salem, MA 01970
Phone 800-520-3011 | Fax 978-594-8052 | Website www.usbio.net