USBio Logo

New Flow Cytometry Antibodies


FACS Charts
Validated Antibodies

Flow Cytometry Image
Flow Cytometry Image
Flow Cytometry Image

Applications:

The technology has applications in a number of fields, including molecular biology, pathology, immunology, virology,[41] plant biology and marine biology.[42] It has broad application in medicine especially in transplantation, hematology, tumor immunology and chemotherapy, prenatal diagnosis, genetics and sperm sorting for sex preselection. Flow cytometry is widely applied to detect sperm cells abnormality associated with DNA fragmentation[43] in male fertility assays.[44] Also, it is extensively used in research for the detection of DNA damage,[45][46] caspase cleavage and apoptosis.[47]Photoacoustic flow cytometry is used in the study of multi-drug-resistant bacteria (most commonly MRSA) to detect, differentiate, and quantify bacteria in the blood marked with dyed bacteriophages[48]. In neuroscience, co-expression of cell surface and intracellular antigens can also be analyzed.[49] In marine biology, the autofluorescent properties of photosynthetic plankton can be exploited by flow cytometry in order to characterise abundance and community structure. In microbiology, it can be used to screen and sort transposon mutant libraries constructed with a GFP-encoding transposon (TnMHA).[50] In protein engineering, flow cytometry is used in conjunction with yeast display and bacterial display to identify cell surface-displayed protein variants with desired properties. The main advantages of flow cytometry over histology and IHC is the possibility to precisely measure the quantities of antigens and the possibility to stain each cell with multiple antibodies-fluorophores, in current laboratories around 10 antibodies can be bound to each cell. This is much less than mass cytometer where up to 40 can be currently measured, but at a higher price and a slower pace. Flow cytometry protocols used for research often needs validation because of the risk of antibody binding to Fc receptors.[51]

CFSE Assay:

Cell Proliferation is the major function in the immune system. Often it is required to analyse the proliferative nature of the cells in order to make some conclusions. One such assay to determine the cell proliferation is the tracking dye carboxyfluorescein diacetate succinimidyl ester (CFSE). It helps to monitor proliferative cells. This assay gives quantitative as well as qualitative data during time-series experiments.[52] This dye binds covalently with the long-lived molecules present inside the cell. When the cells divide, the molecules divide too and, the daughter cells possess half the dye than the parent population. This decrease in the intensity can be visualized by flow cytometry.[53] In literature, this powerful technique of flow cytometry and CFSE has been used to find the efficiency of T-cells in killing the target cells in cancer such as leukemia. In order to visualize the target cell death, not only rapid but to monitor it for a longer period of time, scientists have used CFSE labelling with antibody staining of certain kinds of cells and fluorescently labelled microbeads. This also gave information regarding the proliferation of the target cells upon the treatment of certain cytokines.[54]

Measurable parameters:

  • Apoptosis (quantification, measurement of DNA degradation, mitochondrial membrane potential, permeability changes, caspase activity)
  • Cell adherence (for instance, pathogen-host cell adherence)
  • Cell pigments such as chlorophyll or phycoerythrin
  • Cell surface antigens (Cluster of differentiation (CD) markers)
  • Cell viability
  • Circulating tumor cells: isolation and purification
  • Characterising multidrug resistance (MDR) in cancer cells
  • Chromosome analysis and sorting (library construction, chromosome paint)
  • DNA copy number variation (by Flow-FISH or BACs-on-Beads technology)
  • Enzymatic activity
  • Glutathione
  • Intracellular antigens (various cytokines, secondary mediators, etc.)
  • Membrane fluidity
  • Monitoring electropermeabilization of cells
  • Nuclear antigens
  • Oxidative burst
  • pH, intracellular ionized calcium, magnesium, membrane potential
  • Protein expression and localization
  • Protein modifications, phospho-proteins
  • Scattering of light can be used to measure volume (by forward scatter) and morphological complexity (by side scatter) of cells or other particles, even those that are non-fluorescent. These are conventionally abbreviated as FSC and SSC respectively.
  • Total DNA content (cell cycle analysis, cell kinetics, proliferation, ploidy, aneuploidy, endoreduplication, etc.)
  • Total RNA content
  • Transgenic products in vivo, particularly the green fluorescent protein or related fluorescent proteins
  • Various combinations (DNA/surface antigens, etc.)

For a more complete and detail product listing, click below:

Catalog #ProductFACS Chart
516161Neprilysin, MME, CALLA, NEP, Neutral endopeptidase, SFE, CD10Flow Cytometry Image
516161Neprilysin, MME, CALLA, NEP, Neutral endopeptidase, SFE, CD10Flow Cytometry Image
516161Neprilysin, MME, CALLA, NEP, Neutral endopeptidase, SFE, CD10Flow Cytometry Image
References:
  • Zamora JLR, Aguilar HC.(2018)Flow virometry as a tool to study viruses. Review. Methods. Feb 1;134-135:87-97, PMID 29258922 doi: 10.1016/j.ymeth.2017.12.011
  • ^ Murphy RW, Lowcock LA, Smith C, Darevsky IS, Orlov N, MacCulloch RD, Upton DE (1997). "Flow cytometry in biodiversity surveys: methods, utility and constraints". Amphibia-Reptilia. 18: 1–13. doi:10.1163/156853897x00260.
  • ^ Gorczyca W, Traganos F, Jesionowska H, Darzynkiewicz Z. (1993) Presence of DNA strand breaks and increased sensitivity of DNA in situ to denaturation in abnormal human sperm cells: analogy to apoptosis of somatic cells.Exp Cell Res. 207:202-5. PMID 8391465
  • ^ Evenson DP. (2017) Evaluation of sperm chromatin structure and DNA strand breaks is an important part of clinical male fertility assessment. Transl Androl Urol. 2017 Sep;6(Suppl 4):S495-S500. PMID 29082168
  • ^ Tanaka T, Halicka HD, Huang X, Traganos F, Darzynkiewicz Z. (2006) Constitutive histone H2AX phosphorylation and ATM activation, the reporters of DNA damage by endogenous oxidants. Cell Cycle 5:1940-1945, PMID 16940754
  • ^ MacPhail SH, Banáth JP, Yu Y, Chu E, Olive PL.Cell cycle-dependent expression of phosphorylated histone H2AX: reduced expression in unirradiated but not X-irradiated G1-phase cells.Radiat Res. 2003 Jun;159(6):759-67. PMID 12751958
  • ^ Darzynkiewicz Z, Juan G, Li X, Gorczyca W, Murakami, M. Traganos F. (1997) Cytometry in cell necrobiology. Analysis of apoptosis and accidental cell death (necrosis). Cytometry 27:1-20, PMID 9000580.
  • ^ Viator, John A.; Kellum, John A.; Hempel, John D.; Cook, Justin; Sajewski, Andrea; Fitzpatrick, Matthew; Fernandez, Rachel; Minard, Austin; Noel, Cierra (2019-02-27). "Identification of MRSA infection in blood using photoacoustic flow cytometry". Photons Plus Ultrasound: Imaging and Sensing 2019. International Society for Optics and Photonics. 10878: 1087860. doi:10.1117/12.2510210.
  • ^ Menon V, Thomas R, Ghale AR, Reinhard C, Pruszak J (December 2014). "Flow cytometry protocols for surface and intracellular antigen analyses of neural cell types". Journal of Visualized Experiments (94): e52241. doi:10.3791/52241. PMC 4396953. PMID 25549236.
  • ^ Antypas H, Veses-Garcia M, Weibull E, Andersson-Svahn H, Richter-Dahlfors A (June 2018). "A universal platform for selection and high-resolution phenotypic screening of bacterial mutants using the nanowell slide". Lab on a Chip. 18 (12): 1767–1777. doi:10.1039/c8lc00190a. PMC 5996734. PMID 29781496.
  • ^ Andersen, M. N., Al‐Karradi, S. N., Kragstrup, T. W. and Hokland, M. (2016), Elimination of erroneous results in flow cytometry caused by antibody binding to Fc receptors on human monocytes and macrophages. Cytometry, 89: 1001-1009. doi:10.1002/cyto.a.22995
  • ^ Hawkins, E. D.; Hommel, M.; Turner, M. L.; Battye, F. L.; Markham, J. F.; Hodgkin, P. D. (2007). "Measuring lymphocyte proliferation, survival and differentiation using CFSE time-series data". Nat. Protoc. 2 (9): 2057–67. doi:10.1038/nprot.2007.297. PMID 17853861.
  • ^ Quah, B. J.; Parish, C. R. (2010). "The Use of Carboxyfluorescein Diacetate Succinimidyl Ester (CFSE) to Monitor Lymphocyte Proliferation". J Vis Exp (44). doi:10.3791/2259. PMC 3185625. PMID 20972413.
  • ^ Jedema, I.; Van Der Werff, N. M.; Barge, R. M.; Willemze, R.; Falkenburg, J. H. (2004). "New CFSE-based assay to determine susceptibility to lysis by cytotoxic T cells of leukemic precursor cells within a heterogeneous target cell population". Blood. 103 (7): 2677–2682. doi:10.1182/blood-2003-06-2070. PMID 14630824.
Contact Us

Visit our technical library or contact our support staff to answer your questions.

Telephone:
1-800-520-3011

Library | Contact

Distributors

For customers outside of the United States, please use one of our many distributors.

View Distributors

Payment Methods

We accept the following payment methods as well as pay-by-invoice.

MasterCard Visa PayPal
© 2023-2024 United States Biological - All Rights Reserved