Modulation of chromatin structure plays an important role in the regulation of transcription in eukaryotes. The nucleosome, made up of four core histone proteins (H2A, H2B, H3 and H4), is the primary building block of chromatin (1). The amino-terminal tails of core histones undergo various post-translational modifications, including acetylation, phosphorylation, methylation and ubiquitination (2-5). These modifications occur in response to various stimuli and have a direct effect on the accessibility of chromatin to transcription factors and, therefore, on gene expression (6). In most species, histone H2B is primarily acetylated at Lys5, 12, 15 and 20 (4,7). Histone H3 is primarily acetylated at Lys9, 14, 18 and 23 (2,3). Acetylation at Lys9 appears to have a dominant role in histone deposition and chromatin assembly in some organisms (2,3). Phosphorylation at Ser10, Ser28 and Thr11 of histone H3 is tightly correlated with chromosome condensation during both mitosis and meiosis (8-10). Phosphorylation of Thr3 of histone H3 is highly conserved among many species and is catalyzed by the kinase haspin. Immunostaining with phospho-specific antibodies in mammalian cells reveals mitotic phosphorylation of H3 Thr3 in prophase and its dephosphorylation during anaphase (11).
Product | Size | List | Your Price | Qty | Ext Price | ||||
---|---|---|---|---|---|---|---|---|---|
Subtotal: | Subtotal: | ||||||||
Subtotal: | Subtotal: | ||||||||
Total Coupon Savings: | Total Coupon Savings: | () | |||||||
Your cart is currently empty. | |||||||||
- Coupon Code |