USBio Logo

550801 Aviptadil (VIP, Vasoactive Intestinal Peptide) CAS: 1444827-29-5

Specifications
References
CAS Number
1444827-29-5
Grade
Highly Purified
MDL Number
MFCD00167535
Molecular Formula
C147H238N44O42S
Molecular Weight
3325.8
Shipping Temp
RT
Storage Temp
-20°C
Aviptadil; HSDAVFTDNYTRLRKQMAVKKYLNSILN-NH2; Vasoactive Intestinal Peptide; Vasoactive Intestinal Octacosapeptide; VIP (human, mouse, rat); RLF-100

Vasoactive intestinal peptide (VIP) is a 28 amino acid peptide that belongs to secretin-glucagon-CRF super- family, the ligand of class II G protein-coupled receptors subclass B1. VIP binds to the receptors VPAC1, VPAC2 and with less sensitivity to PAC1, which trigger a G-alpha-mediated signalling cascade, eventually activating adenyl cyclase leading to increases in cAMP and PKA. The PKA then activates other intracellular signaling pathways like the phosphorylation of CREB and other transcriptional factors. The VIP receptors are widely expressed (brain, liver, lung, pancreas, skeletal muscle, heart, kidney, adipose tissue, testis and stomach and also abundantly in immune cells. Although first identified in the intestinal tract, VIP is now known to be produced throughout the body, but primarily concentrated in the lungs, bound to the alveolar type II cell type, which is critical for the transmission of oxygen to the body.

The widespread distribution of VIP correlates with its involvement in a wide variety of biological activities in- cluding vasodilation, bronchodilation, hyperglycaemia, neuroprotection, inflammation, autoimmunity, cancer and hormonal regulation. VIP has multiple physiological and pathological effects on development, growth, and the control of neuronal, epithelial, and endocrine cell functions that in turn regulate ion secretion, nu- trient absorption, gut motility, glycemic control, carcinogenesis, immune responses and circadian rhythms. VIP is a antiproliferative, anti-inflammatory and immune-regulatory peptide. As anti-inflammatory agent it acts by inhibiting phagocytic activity, free radical production, adherence and migration of macrophages. It reduces the production of inflammatory cytokines (TNFα, IL-12, IL-6 and IL-1β) and various chemokines and downregulates the expression of inducible nitric oxide synthase.
VIP is expressed in airway epithelial cells, secretory glands, immune and inflammatory cells. It functions as a neuroendocrine hormone and putative neurotransmitter. It stimulates neuronal survival and modulates glycogen metabolism. VIP blocks mitogen-activated proliferation of T cells by preventing interleukin-2 pro- duction. It promotes electrolyte secretion and provides protection against oxidant injury. VIP has especially potent anti-inflammatory activity in animal models of respiratory distress, acute lung injury and inflamma- tion. VIP has been used in clinical trials for sarcoidosis, pulmonary fibrosis, asthma/allergy, and pulmonary hypertension.
VIP (RLF-100; Aviptadil) provides rapid respiratory failure reduction in clinically ill patients with COVID-19 and blocks replication of the SARS-CoV-2 virus in human lung cells and monocytes. Therefore it is beeing investigated in clinical trials for the treatment of Acute Respiratory Distress Syndrome (ARDS) in COVID- 19. COVID-19-related death is primarily caused by respiratory failure induced by early viral infection of the alveolar type 2 cells. These cells are known to have angiotensin converting enzyme 2 (ACE2) receptors at high levels, which serve as the route of entry for the SARS-CoV-2 into the cells. The same type 2 alveolar cells have high concentrations of VIP receptors on their cell surfaces giving rise to the hypothesis that VIP could specifically protect these cells from injury. Interestingly alveolar type 2 cells produce a surfactant that coats the lung and is essential for oxygen exchange and RLF-100 specifically targets these vulnerable alveolar type 2 cells.
Sequence
Aviptadil; HSDAVFTDNYTRLRKQMAVKKYLNSILN-NH2; Vasoactive Intestinal Peptide; Vasoactive Intestinal Octacosapeptide; VIP (human, mouse, rat); RLF-100
Synonyms
Aviptadil; HSDAVFTDNYTRLRKQMAVKKYLNSILN-NH2; Vasoactive Intestinal Peptide; Vasoactive Intestinal Octacosapeptid
CAS No
1444827-29-5 Free Base: 40077-57-4
Molecular Formula
C147H238N44O42S
Molecular Weight
3325.8
Appearance
White to off-white solid
Purity
≥98% (HPLC)
Solubility
Soluble in water or aqueous solution (1% AcOH) (1mg/ml)
Storage and Stability
Store at -20°C. For maximum recovery of product, centrifuge the original vial prior to removing the cap.
References
1. VIP as a modulator of lung inflammation and airway constriction: S.I. Said; Am. Rev. Respir. Dis. 143, S22|(1991) (Review)|2. The control of fluid-secreting epithelia by VIP: S.C. Martin & T.J. Shuttleworth; Ann. N. Y. Acad. Sci. 805, 133 (1996) (Review)|3. Pathways of inflammation and cell death in the lung: modulation by vasoactive intestinal peptide: S.I. Said & K.G. Dickman; Regul. Pept. 93, 21 (2000) (Review)|4. Immunology of VIP: a review and therapeutical perspectives: R.P. Gomariz, et al.; Curr. Pharm. Des. 7, 89 (2001) (Review)|5. VIP as a trophic factor in the CNS and cancer cells: T.W. Moody, et al.; Peptides 24, 163 (2003) (Review)|6. VIP: a very important peptide in T helper differentiation: M. Delgado; Trends Immunol. 24, 221 (2003) (Review)|7. Therapeutic approaches of vasoactive intestinal peptide as a pleiotropic immunomodulator: E. Gonzalez- Rey, et al.; Curr. Pharm. Des. 13, 1113 (2007) (Review)|8. Anti-inflammatory neuropeptides: a new class of endogenous immunoregulatory agents: M. Delgado & D. Ganea; Brain Behav. Immun. 22, 1146 (2008) (Review)|9. VPAC and PAC receptors: From ligands to function: L. Dickson & K. Finlayson; Pharmacol. Ther. 121, 294 (2009) (Review)|10. Therapeutic potential of VIP vs PACAP in diabetes: A.D. Sanlioglu, et al.; J. Mol. Endocrinol. 49, R157 (2012) (Review)|11. VIP in neurological diseases: more than a neuropeptide: M. Morell, et al.; Endocr. Metab. Immune Disord. Drug Targets 12, 323 (2012) (Review)|12. The neuropeptide vasoactive intestinal peptide: direct effects on immune cells and involvement in inflamma- tory and autoimmune diseases: D. Ganea, et al.; Acta Physiol. 213, 442 (2015) (Review)|13. The effects of vasoactive intestinal peptide in neurodegenerative disorders: G. Deng & L. Jin; Neurol. Res. 39, 65 (2017) (Review)|14. Recent advances in vasoactive intestinal peptide physiology and pathophysiology: focus on the gastroin- testinal system: M. Iwasaki, et al.; F1000Res. 8, Rev-1629 (2019) (Review)|15. Brief Report: Rapid Clinical Recovery from Critical COVID-19 with Respiratory Failure in a Lung Transplant Patient Treated with Intravenous Vasoactive Intestinal Peptide: J.G. Youssef, et al.; (Preprint) (2020)|16. Rapid Recovery from COVID-19 Respiratory Failure with Comorbidity in 21 Patients Treated with Vasoactive Intestinal Peptide: J.G. Youssef, et al.; SSRN Online (2020)|17. The neuropeptides VIP and PACAP inhibit SARS-CoV-2 replication in monocytes and lung epithelial cells, decrease the production of proinflammatory cytokines, and VIP levels are associated with survival in severe COVID-19 patients: J.R. Temerozo, et al.; bioRxiv (Preprint) (2020)
USBio References
No references available
Pricing
Order
Proceed to Checkout
Cart Summary
ProductSizeListYour PriceQtyExt Price
Subtotal:Subtotal:
Subtotal:Subtotal:
Total Coupon Savings:Total Coupon Savings:()
Your cart is currently empty.
- Coupon Code
Recently Viewed
  • Contact Us

    Visit our technical library or contact our support staff to answer your questions.

    Telephone:
    1-800-520-3011

    Library | Contact

    Distributors

    For customers outside of the United States, please use one of our many distributors.

    View Distributors

    Payment Methods

    We accept the following payment methods as well as pay-by-invoice.

    MasterCard Visa PayPal
    © 2023-2024 United States Biological - All Rights Reserved